# Segunda edición

# BIOTECNOLOGÍA AMBIENTAL DE AGUAS Y AGUAS RESIDUALES

César Lazcano Carreño







# Contenido



| Prólogo                                                | XXIX |
|--------------------------------------------------------|------|
| Presentación                                           | XXXI |
| Capítulo 1. Introducción                               | 1    |
| Capítulo 2. Los seres vivos en los ambientes acuáticos | 3    |
| Generalidades                                          | 3    |
| La célula                                              | 4    |
| Definición                                             | 4    |
| Composición química                                    | 4    |
| Carbohidratos                                          | 4    |
| Proteínas                                              | 10   |
| Lípidos                                                | 16   |
| Ácidos nucleicos                                       | 19   |
| Otros componentes químicos del protoplasma celular     | 26   |
| Conceptos básicos de enzimología                       |      |
| Cinética química                                       |      |
| Orden de una reacción                                  |      |
| Las enzimas                                            | 30   |
| Clases de enzimas                                      | 31   |

| Especificidad enzimática                                    | 31 |
|-------------------------------------------------------------|----|
| Cinética enzimática                                         | 31 |
| Actividad enzimática                                        | 35 |
| Energía y metabolismo                                       | 36 |
| Generalidades                                               | 36 |
| Primera ley de la termodinámica                             | 36 |
| Segunda ley de la termodinámica                             | 37 |
| Formas de energía que usan los organismos vivos             | 37 |
| Energía luminosa                                            | 37 |
| Potencial eléctrico                                         | 38 |
| Oxidación biológica                                         | 39 |
| Mecanismos de la oxidación biológica de la materia orgánica | 39 |
| Reacciones de óxido-reducción                               | 40 |
| Metabolismo                                                 | 40 |
| Catabolismo                                                 | 40 |
| Anabolismo (biosíntesis)                                    | 44 |
| Fotosíntesis                                                | 44 |
| Los virus                                                   | 46 |
| Generalidades                                               | 46 |
| Características de los virus                                | 47 |
| Tipos de virus                                              | 48 |
| Virus animales y humanos                                    | 48 |
| Virus de bacterias o bacteriófagos                          | 52 |
| Virus de plantas                                            | 59 |
| Taxonomía y caracterización de los seres vivos              | 59 |
| Generalidades                                               | 59 |
| Procariotes                                                 | 61 |
| Forma y tamaño de las células procarióticas                 | 62 |
| Estructura de la célula procariótica                        |    |
| Nutrición en procariotes                                    | 69 |
| Crecimiento microbiano                                      | 71 |
| Factores para el crecimiento de los procariotes             | 73 |
| Cinética del crecimiento microbiano en reactores            | 74 |
| Dominio Archaea                                             | 79 |
| Arqueas halofílicas extremas                                | 80 |
| Arqueas sulfatorreductoras                                  |    |
| Arqueas que carecen de pared celular                        |    |
| Arqueas extremotermófilas                                   |    |

| Arqueas metanogénicas                                          | 82  |
|----------------------------------------------------------------|-----|
| Dominio Bacteria                                               | 86  |
| Bacterias patógenas                                            | 86  |
| Bacterias que originan infecciones gastrointestinales          | 86  |
| Bacterias que originan enfermedades emergentes y oportunistas  |     |
| patógenas en aguas                                             | 93  |
| Bacterias indicadoras de la calidad del agua                   | 99  |
| Dominio Eukaria                                                | 135 |
| Estructura de la célula eucariota                              | 135 |
| Reino Protista                                                 | 136 |
| Reino fungi                                                    | 150 |
| Reino Plantae                                                  | 153 |
| Reino Animalia                                                 | 157 |
|                                                                |     |
| Capítulo 3. Ecología de los ambientes acuáticos                | 165 |
| Generalidades                                                  | 165 |
| Los ecosistemas acuáticos                                      | 167 |
| Autodepuración de los ecosistemas acuáticos                    | 169 |
| Factores que intervienen en el proceso de autodepuración       | 170 |
| Fases de la autodepuración                                     | 173 |
| Termodinámica de los ecosistemas acuáticos                     | 174 |
| Principios básicos de ecología aplicados a la termodinámica de |     |
| los ecosistemas                                                | 174 |
| Crecimiento y desarrollo de los ecosistemas                    | 178 |
| Definición termodinámica de exergía                            | 179 |
| El ciclo hidrogeológico                                        | 180 |
| Balance hidrológico                                            | 184 |
| Los ciclos biogeoquímicos                                      | 185 |
| Ciclo del carbono                                              | 187 |
| Ciclo del nitrógeno                                            | 187 |
| Fijación de N                                                  | 189 |
| Amonificación                                                  | 193 |
| Nitrificación                                                  | 193 |
| Desnitrificación                                               | 195 |
| Asimilación del armonio                                        | 197 |
| Reducción disimilatoria de nitrato a amonio                    | 198 |
| Proceso Anammox                                                | 198 |
| Uso del proceso Anammox en el tratamiento de aguas residuales  | 200 |

| Ciclo del fósforo                                                      | 201 |
|------------------------------------------------------------------------|-----|
| Meteorización                                                          | 202 |
| Solubilización                                                         | 202 |
| Asimilación                                                            | 202 |
| Precipitación                                                          | 202 |
| Mineralización                                                         | 202 |
| Remoción de fósforo en plantas de tratamiento                          | 203 |
| Microorganismos que contribuyen con la precipitación química           | 204 |
| Ciclo del azufre                                                       | 204 |
| Oxidación del azufre elemental                                         | 206 |
| Reducción del sulfato                                                  | 206 |
| Capítulo 4. Evaluación de la calidad biológica de las aguas            | 209 |
| Generalidades                                                          | 209 |
| Evaluación de la salud de los ecosistemas y su relación con            |     |
| la salud del hombre y la biota                                         | 210 |
| Aspectos generales para el control y vigilancia de las fuentes de agua | 212 |
| Uso de bioindicadores y biomarcadores en problemas de salud            |     |
| de los ecosistemas                                                     |     |
| Clasificación de los biomarcadores                                     | 215 |
| Biomarcadores de la condición fisiológica                              | 215 |
| Biomarcadores de la condición celular                                  | 215 |
| Biomarcadores específicos para metales                                 | 215 |
| Las algas como bioindicadores de la calidad de los ecosistemas         |     |
| acuáticos                                                              | 216 |
| Uso de macroinvertebrados bentónicos como indicadores en cuerpos       |     |
| de agua                                                                | 217 |
| Principales biomarcadores usados en los monitoreos                     | 210 |
| de ecosistemas acuáticos                                               | 219 |
| Biosensores obtenidos por ingeniería genética para                     | 224 |
| el monitoreo de fuentes de agua                                        |     |
| Biosensores automatizados para análisis de aguas                       |     |
| Biosensores bacterianos en contaminación con petróleo                  | 221 |
| Capítulo 5. Características de las aguas residuales                    | 231 |
| Generalidades                                                          |     |
| Definición                                                             |     |
| Clases de aguas residuales                                             |     |
| Aguas residuales domésticas                                            |     |
| Aguas residuales domesticas                                            | 232 |
| 11EU03 1C3IUU0IC3 IIIUIIICIDAIC3                                       |     |

| Aguas residuales industriales                                         | 233 |
|-----------------------------------------------------------------------|-----|
| Aguas residuales agropecuarias o agroindustriales                     | 233 |
| Aguas residuales de origen minero-metalúrgico                         |     |
| Aguas pluviales                                                       |     |
| Características físicas de las aguas residuales                       | 234 |
| Sólidos                                                               | 234 |
| Sólidos totales (ST)                                                  | 234 |
| Temperatura                                                           | 236 |
| Color                                                                 | 236 |
| Olor                                                                  | 237 |
| Transmitancia                                                         | 237 |
| Características químicas de las aguas residuales                      | 237 |
| рН                                                                    | 237 |
| Alcalinidad                                                           | 238 |
| Carbohidratos                                                         | 239 |
| Proteínas                                                             | 239 |
| Lípidos                                                               | 239 |
| Nitrógeno                                                             | 239 |
| Fósforo                                                               | 240 |
| Oxígeno disuelto (OD)                                                 | 240 |
| Demanda bioquímica de oxígeno (DBO <sub>5</sub> )                     | 24] |
| Demanda química de oxígeno (DQO)                                      |     |
| Carbono orgánico total (COT)                                          | 249 |
| Carga orgánica en los desagües domésticos                             | 249 |
| Características biológicas de las aguas residuales                    | 250 |
| Modelos de reactores biológicos en el tratamiento de aguas residuales | 250 |
| Tipos de reactores biológicos                                         | 253 |
| Reactores básicos de crecimiento en suspensión                        | 253 |
| De flujo discontinuo                                                  | 253 |
| De flujo en pistón                                                    | 254 |
| De flujo continuo y mezcla completa                                   | 255 |
| Reactores de película fija                                            | 257 |
| De lecho relleno                                                      |     |
| De lecho fluidizado (FBR)                                             | 257 |
| Contactor biológico rotatorio (RBC)                                   | 258 |
| Capítulo 6. Introducción al tratamiento de aguas residuales           | 261 |
| Generalidades                                                         |     |
| Obietivos del tratamiento de las aguas residuales                     | 262 |

| Procesos operacionales y unitarios en sistemas                   |      |
|------------------------------------------------------------------|------|
| de tratamiento de aguas residuales                               |      |
| Biodegradabilidad de la materia orgánica en las aguas residuales | 265  |
| Importancia de las moléculas de H <sub>2</sub> y acetato         | 2.50 |
| en el proceso de metanogénesis                                   | 269  |
| Capítulo 7. Lagunas de estabilización                            | 2.71 |
| Generalidades                                                    |      |
| Descripción del proceso                                          |      |
| Clasificación de las lagunas de estabilización                   |      |
| Lagunas aerobias                                                 |      |
| Lagunas facultativas                                             |      |
| Lagunas anaeróbicas                                              |      |
| Lagunas anóxicas                                                 |      |
| Lagunas aireadas                                                 |      |
| Objetivos del tratamiento por medio de lagunas de estabilización |      |
| Ventajas del uso de lagunas de estabilización                    |      |
| Desventajas del uso de lagunas de estabilización                 |      |
| Factores que influencian los diseños y funcionamiento            |      |
| de las lagunas de estabilización                                 | 279  |
| Viento                                                           | 279  |
| Temperatura                                                      | 280  |
| Precipitaciones                                                  | 281  |
| Tiempo de retención hidráulico (TRH)                             | 281  |
| Radiación solar                                                  | 281  |
| Las algas                                                        | 283  |
| Las bacterias                                                    | 283  |
| Evaporación                                                      | 283  |
| Área superficial                                                 | 284  |
| Cortocircuitos                                                   | 284  |
| Mezcla                                                           |      |
| pH                                                               | 284  |
| Materiales tóxicos                                               | 285  |
| Oxígeno disuelto (OD)                                            | 285  |
| Nutrientes                                                       | 285  |
| Cálculos básicos para el diseño de sistemas de tratamiento       |      |
| de aguas residuales                                              |      |
| Diseño de lagunas anaeróbicas                                    |      |
| Fiemplo de dimensionamiento y diseño de lagunas anaeróbicas      | 2.88 |

| Diseño de lagunas facultativas                                     | 289 |
|--------------------------------------------------------------------|-----|
| Modelo ecológico en lagunas facultativas                           |     |
| Proceso de remoción de patógenos                                   | 294 |
| Modelo de mezcla completa y cinética de primer orden               |     |
| Parámetros de diseño de lagunas facultativas                       | 295 |
| Ejemplo de diseño y dimensionamiento de lagunas facultativas       | 302 |
| Diseño de lagunas aireadas de estabilización                       | 304 |
| Ecuación para el dimensionamiento de lagunas aireadas facultativas | 304 |
| Ecuación para el dimensionamiento de lagunas aireadas              |     |
| de mezcla completa                                                 | 304 |
| Remoción de la DBO                                                 | 304 |
| Requerimientos de oxígeno                                          | 306 |
| Concentración de biomasa en la laguna                              |     |
| Producción de lodos                                                | 307 |
| Clarificación y depuración del efluente                            | 308 |
| Optimización del diseño de lagunas aireadas                        | 308 |
| Ejemplo de diseño y dimensionamiento de lagunas aireadas           | 308 |
| Capítulo 8. Lodos activados                                        | 313 |
| Generalidades                                                      | 313 |
| Aspectos biológicos en los reactores para lodos activados          | 315 |
| Floc de lodos activados y biofloculación                           | 315 |
| Presencia de bacterias                                             | 317 |
| Presencia de hongos                                                | 319 |
| Presencia de protozoarios y rotíferos                              |     |
| Oxidación de la materia orgánica en el tanque de aireación         |     |
| Sedimentación de lodos                                             |     |
| Determinación del índice volumétrico de lodos (SVI)                |     |
| Remoción de patógenos                                              |     |
| Sistema convencional de lodos activados                            |     |
| Parámetros de diseño de reactores para lodos activados             |     |
| Principales problemas que ocurren en sistemas de lodos activados   |     |
| Técnicas de control de sistemas de lodos activados                 |     |
| Respirometría                                                      |     |
| Tipos de respirómetros                                             |     |
| Ventajas de la respirometría                                       |     |
| Ensayo de toxicidad                                                |     |
| FIISAVO DE LOXICIDAD                                               | 341 |
| Ejemplo de diseño de reactores para lodos activados                |     |

| Capítulo 9. Reactores de película biológica fija     | 345 |
|------------------------------------------------------|-----|
| Biofiltros                                           | 345 |
| Generalidades                                        | 345 |
| El empaque                                           | 347 |
| aracterísticas del empaque                           | 347 |
| Tipos de empaque                                     | 348 |
| Clasificación de los biofiltros                      | 349 |
| Biología de los biofiltros percoladores              | 350 |
| Ventajas de los biofiltros                           | 352 |
| Desventajas de los biofiltros                        | 352 |
| Criterios de diseño de biofiltros                    | 353 |
| Parámetros de diseño en biofiltros sin recirculación | 354 |
| Parámetros de diseño en biofiltros con recirculación | 355 |
| Problemas operativos en biofiltros                   | 361 |
| Biodiscos                                            | 363 |
| Cinética del tratamiento en biodiscos                | 364 |
| Dimensionamiento de biodiscos                        | 366 |
| Ventajas de los sistemas RBC                         | 367 |
| Capítulo 10. Tratamiento anaeróbico                  | 369 |
| Generalidades                                        |     |
| Microbiología del proceso anaeróbico                 | 370 |
| El proceso de hidrólisis                             |     |
| El proceso de acidogénesis]                          |     |
| El proceso de acetogénesis                           |     |
| El proceso de metanogénesis                          | 372 |
| Granulación                                          | 374 |
| Reactores anaeróbicos                                | 376 |
| Generalidades                                        | 376 |
| Ventajas de los reactores anaeróbicos                | 376 |
| Desventajas de los reactores anaeróbicos             | 376 |
| Requisitos para un buen tratamiento                  | 377 |
| Tipos de reactores anaeróbicos                       | 378 |
| Reactores de primera generación                      | 378 |
| Reactores de segunda generación                      |     |
| Reactores de tercera generación                      |     |
| Remoción de DQO y producción de metano               | 381 |

| Principales sistemas anaeróbicos usados en tratamiento                |     |
|-----------------------------------------------------------------------|-----|
| de aguas residuales                                                   | 381 |
| Tanque séptico                                                        | 381 |
| Tanque Imhoff                                                         | 383 |
| Filtro anaeróbico                                                     | 386 |
| Reactor anaeróbico de flujo ascendente y manto de lodos (UASB)        | 388 |
| Reactor granular expandido y manto de lodos                           | 392 |
| Reactor de lecho fluidizado                                           | 392 |
| Reactor de lecho expandido                                            | 393 |
| •                                                                     |     |
| Capítulo 11. Reúso de aguas residuales                                | 395 |
| Generalidades                                                         |     |
| Factores favorables para el reúso o reciclaje de aguas residuales     | 396 |
| Reúso en agricultura                                                  | 397 |
| Experiencias en el uso de aguas residuales en agricultura en diversas |     |
| partes del mundo                                                      | 399 |
| Algunas sugerencias para el uso adecuado de aguas residuales          |     |
| agricultura                                                           | 404 |
| Reúso en piscicultura                                                 | 405 |
| Reúso en la recarga del acuífero                                      | 406 |
| Reúso como agua potable                                               | 406 |
| Adendas                                                               | 409 |
| Abreviaturas y símbolos usados en el texto                            | 423 |
| Glosario de términos                                                  |     |
| Referencias Bibliográficas                                            | 491 |

### ÍNDICE DE FIGURAS

| Figura 1.   | Estructuras de diferentes monosacáridos                                 | 6   |
|-------------|-------------------------------------------------------------------------|-----|
| Figura 2.   | Estructuras de tres disacáridos importantes: lactosa, sucrosa y maltosa | 7   |
| Figura 3.   | Estructura de un trisacárido                                            |     |
| Figura 4.   | Cadena de monosacáridos que conforman la amilosa en el                  | . 0 |
| 118414 1.   | almidón, el glucógeno, la celulosa y la estructura de la quitina        | 9   |
| Figura 5.   | Estructura de un aminoácido y unión de dos por medio                    |     |
| O           | del enlace peptídico                                                    | 11  |
| Figura 6.   | Estructura primaria de las proteínas                                    | 14  |
| Figura 7.   | Estructura secundaria de una proteína β-laminar                         | 14  |
| Figura 8.   | Estructura terciaria de las proteínas                                   | 15  |
| Figura 9.   | Estructura globular y cuaternaria de la hemoglobina                     | 16  |
| Figura 10.  | Estructura química de un triglicérido                                   | 17  |
| Figura 11.  | Esqueleto estructural del ciclopentana operhidro fenantreno             | 17  |
| Figura 12.  | Estructura química de un fosfolípido                                    | 18  |
| Figura 13.  | Fórmulas químicas de las bases nitrogenadas que conforman               |     |
|             | el ADN                                                                  |     |
| Figura 14.  | Estructura química de un nucleótido y nucleósido                        | 20  |
| 0           | Nucleótido A                                                            | 20  |
| Figura 15b. | Conformación y estructura de la doble hélice de la molécula de ADN      | 21  |
| Figura 16.  | Modelo de replicación del ADN                                           |     |
| _           | Nucleótidos del ARN                                                     |     |
| _           | Estructura terciaria de una molécula de ARNt                            |     |
| _           | Estructura bipolar de la molécula de agua                               |     |
| _           | Gráfico de la energía de activación en una reación química              |     |
| _           | Gráfico de una reacción típica de orden cero                            |     |
| _           | Gráfico de una reacción típica de primer orden                          |     |
| _           | Gráfico de una reacción típica de segundo orden                         |     |
| _           | Esquema de una reacción enzimática                                      |     |
| _           | Modelo cinético de Monod                                                |     |
|             | Estructura molecular del adenosín trifosfato (ATP)                      |     |
|             | Modelo de respiración aeróbica                                          |     |
| _           | Modelo de fermentación con producción de etanol                         |     |
| _           | Modelo de respiración anaeróbica                                        |     |

| Figura 31.   | Modelo de proceso respiratorio por desnitrificación                                                                          | 43         |
|--------------|------------------------------------------------------------------------------------------------------------------------------|------------|
| Figura 32.   | Modelo de acoplamiento del catabolismo y anabolismo                                                                          |            |
|              | mostrando el papel del ATP. (Adenda)                                                                                         | 110        |
| Figura 33.   | Esquema simplificado del ciclo de Calvin                                                                                     | 46         |
| Figura 33a.  | Micrografía del virus humano de la hepatitis E por                                                                           |            |
|              | microscopía electrónica                                                                                                      | 50         |
| Figura 34.   | Estructura del fago                                                                                                          | 54         |
| Figura 35.   | Imagen tridimensional de la placa basal del bacteriófago                                                                     | 54         |
| Figura 36.   | Micrografía de barrido electrónico que muestra células de <i>E</i> .                                                         |            |
|              | coli con partículas de fago adheridas a su superficie                                                                        | 55         |
| Figura 37.   | Ciclo lítico y lisogénico del fago                                                                                           | 56         |
| Figura 38.   | Árbol filogenético con los tres dominios aceptados con base en                                                               |            |
|              | las comparaciones secuenciales del ARNr: Bacteria, Archaea y                                                                 |            |
|              | Eukarya                                                                                                                      |            |
|              | Formas de la célula procariótica                                                                                             |            |
|              | Estructura de una célula procariótica típica                                                                                 | 64         |
| Figura 41.   | Diferencias estructurales entre las células Gram positivas                                                                   |            |
|              | y Gram negativas                                                                                                             |            |
| _            | Curva típica de crecimiento microbiano                                                                                       |            |
| _            | Modelo cinético para crecimiento de bacterias, según Monod                                                                   |            |
| _            | Modelo experimental de la capacidad de formación de biomasa                                                                  | 78         |
| Figura 45.   | Imagen de Methanobacterium formicicum por inmuno                                                                             |            |
|              | fluorescencia indirecta con sonda calibrada de anticuerpos                                                                   | 02         |
| Γ' 16        | específicos                                                                                                                  | 82         |
| Figura 40.   | Imagen de <i>Methanobrevibacter smithii</i> por inmunofluorescencia indirecta con sonda calibrada de anticuerpos específicos | 63         |
| Eigura 17    | Imagen de <i>Methanococcus maripalidus</i> por inmunofluorescencia                                                           | 0)         |
| rigura +1.   | indirecta con sonda calibrada de anticuerpos específicos                                                                     | 83         |
| Figura 48.   | Imagen de <i>Methanospirillum hungatei</i> por inmunofluorescencia                                                           | 05         |
| 118414 10.   | indirecta con sonda calibrada de anticuerpos específicos                                                                     | 84         |
| Figura 49    | Micrografía de Methanosarcina barkeri                                                                                        |            |
|              | Micrografía de <i>Methanothrix thermophyla</i>                                                                               |            |
|              | Micrografía de Salmonella sp, mostrando sus flagelos peritricos                                                              |            |
|              | Micrografía de Shigella sp                                                                                                   |            |
| _            | Micrografía de Vibrio cholerae                                                                                               |            |
| _            | Representación esquemática de <i>H. pylori</i> en la mucosa del                                                              | <b>ν</b> 1 |
| 1 15010 5 1. | estómago                                                                                                                     | 96         |
| Figura 55.   | Micrografía de Campylobacter jejuni                                                                                          |            |

| Figura 56.      | Micrografía de Spirochaeta americana, aislada de sedimentos          |       |
|-----------------|----------------------------------------------------------------------|-------|
|                 | de un lago en California del norte                                   | 101   |
| Figura 57.      | Micrografía de Bdelovibrio mostrando su ciclo de                     |       |
|                 | alimentación como depredador bacteriano                              | 101   |
| Figura 58.      | Micrografía de Zoogloea ramigera                                     | 102   |
| Figura 59.      | Micrografía de Acinetobacter sp.                                     | 103   |
| Figura 60.      | Micrografía de Bacteroides fragilis del intestino humano             | 104   |
| Figura 61.      | Micrografía de Chromatium sp                                         | 104   |
| Figura 62.      | Micrografía de <i>Thiocapsa</i> sp.                                  | 105   |
|                 | Estructura química de la microcistina                                |       |
| Figura 63.      | Micrografía de Anabaena ambigua mostrando los heterocistos           | 109   |
| Figura 64.      | Micrografía de <i>Nostoc</i> sp.                                     | 110   |
| Figura 65.      | Micrografía de <i>Prochloron</i> sp.                                 | 110   |
| Figura 66.      | Esquema tridimensional del consorcio Chlorochromtium                 |       |
|                 | aggregatum                                                           | 111   |
| Figura 67.      | Micrografía de Acidithiobacillus ferroxidans de biolixiviación       |       |
|                 | de minas                                                             |       |
| _               | Micrografía de Leptospirillum ferrooxidans                           | 113   |
| Figura 69.      | Micrografía de Galionella sp., bacteria del fierro que crea un       |       |
|                 | filamento que se adhiere a las superficies                           |       |
| _               | Micrografía por fluorescencia de Nitrosococcus sp.                   |       |
| _               | Micrografia de Prosthecobacter fusiformis                            | 116   |
| Figura 72.      | Caulobacter dividiéndose asimétricamente en una célula hija          | 116   |
|                 | móvil (con flagelo) y la otra célula hija forma el tallo             | 116   |
| Figura 73.      | Micrografía de <i>Sphaerotilus natans</i> , bacteria filamentosa que | 117   |
| T. 74           | se encuentra en plantas de lodos activados                           | 11/   |
| Figura /4.      | Micrografía de <i>Leptothrix ochracea</i> , bacteria que remueve     | 110   |
| F: 75           | arsénico proveniente de los relaves mineros                          |       |
| _               | Micrografía de <i>Crenothrix</i> sp.                                 | 118   |
| Figura 76.      | Micrografía electrónica de Cytophaga hutchintsonii                   | 110   |
| Eiguna 77       | desarrollada en papel de filtro de celulosa                          | 119   |
| rigura 11.      | en contraste de fase                                                 | 120   |
| Figura 78       | Micrografía de <i>Beggiatoa</i> sp. mostrando acumulación            | 120   |
| i iguia 70.     | de gránulos de azufre                                                | 120   |
| Figura 70       | Micrografía en contraste de fase de <i>Saprospira</i> sp., bacteria  | 120   |
| 1 1guia 19.     | filamentosa de aguas naturales                                       | 121   |
| Figura 80       | Micrografía de Leucothrix mucor                                      |       |
|                 | Micrografía de Staphylococcus aureus: cocos Gram positivos           |       |
| 1 18 a1 a O 1 . | microsiana de supri y tococcus unicus. cocos Giani positivos         | 1 2 2 |

| Figura 82. Micrografía de <i>Streptococcus</i> sp.                                           | 123 |
|----------------------------------------------------------------------------------------------|-----|
| Figura 83. Micrografía de Bacillus subtilis mostrando las endosporas                         | 123 |
| Figura 84. Micrografía de la bacteria reductora del azufre                                   |     |
| Desulfotomaculun nigrificans                                                                 | 124 |
| Figura 85. Micrografía de Arthrobacter sp. mostrando bacilos de formas                       |     |
| diferentes (pleomorfismo)                                                                    | 124 |
| Figura 86. Micrografía de Bifidobacterium sp., que ayudan en los procesos                    |     |
| fermentativos en la producción de yogur                                                      | 125 |
| Figura 87. Micrografía de Mycobacterium avium, que produce la                                | 126 |
|                                                                                              | 125 |
| Figura 88. Micrografía de <i>Nocardia asteroides</i> mostrando células alargadas             | 127 |
| con septas y esporas circulares                                                              | 121 |
| Figura 89. Micrografía de <i>Rhodococcus jostii</i> con inclusiones poli-p en el protoplasma | 127 |
| Figura 90. Micrografía de <i>Pseudonocardia spinosa</i>                                      |     |
| Figura 91. Micrografía de Nocardioides albus                                                 |     |
| Figura 92. Micrografía de <i>Frankia alni</i> mostrando las hifas vegetativas                | 120 |
| septadas y las vesículas                                                                     | 128 |
| Figura 93. Micrografía de <i>Actinoplanes</i> sp.                                            |     |
| Figura 94. Micrografía de <i>Micromonospora</i> sp.                                          |     |
| Figura 95. Micrografía de <i>Actinomyces</i> sp. mostrando sus hifas septadas                |     |
| y las esporas                                                                                | 130 |
| Figura 96. Micrografía de <i>Streptosporangium</i> sp. mostrando los micelios                |     |
| vegetativos y los esporangios                                                                | 131 |
| Figura 97. Micrografía de Actinomadura sp.                                                   | 131 |
| Figura 98. Clave para la identificación de organismos filamentosos con                       |     |
| gránulos de azufre en lodos activados                                                        | 132 |
| Figura 99. Clave para la identificación de organismos filamentosos sin                       |     |
| gránulos de azufre Gram (+) en lodos activados                                               | 133 |
| Figura 100. Clave para la identificación de organismos filamentosos sin                      |     |
| gránulos de azufre Gram (-) en lodos activados                                               |     |
| Figura 102. Estructura de una célula eucariótica típica                                      | 135 |
| Figura 103. Micrografía de <i>Pediastrum</i> sp. mostrando sus colonias en                   | 127 |
| disposición cenobial                                                                         |     |
| Figura 104. Micrografía de Euglena sp.                                                       |     |
| Figura 105. Diferentes especies de algas del grupo de las Crisófitas                         |     |
| Figura 106. Diferentes especies de algas del grupo de las Pyrrofitas                         |     |
| Figura 107. Micrografía de Giardia intestinalis                                              |     |
| Figura 108. Micrografía de una ameba ingiriendo un <i>Paramecium</i>                         |     |
| Figura 109. Micrografía de una Vorticella (ciliado)                                          | 142 |

| Figura   | 110. | Quiste de <i>Entamoeba histolytica</i> mostrando los cuatro núcleos143                                                                          |
|----------|------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Figura   | 111. | Micrografía de <i>Achantamoeba</i> sp                                                                                                           |
| Figura   | 112. | Micrografía de Naegleria fowleri145                                                                                                             |
| Figura   | 113. | Ciclo biológico de Naegleria y Achantamoeba (Adenda)416                                                                                         |
| Figura   | 114. | Micrografía de Balantidium coli                                                                                                                 |
| Figura   | 115. | Micrografía de quistes de Giardia intestinalis y ooquistes de                                                                                   |
|          |      | Cryptosporidium sp. por inmunofluorescencia usando                                                                                              |
|          |      | anticuerpos monoclonales                                                                                                                        |
|          |      | Ciclo biológico de <i>Cyclospora cayetanensis</i> (Adenda)417                                                                                   |
| _        |      | Micrografía de Saccharomyces cerviciae mostrando las yemas150                                                                                   |
| Figura   | 118. | Fotografía de Basidiomicetos también llamados setas                                                                                             |
|          |      | u hongos de sombrerillo                                                                                                                         |
| Figura   | 119. | Micrografía de <i>Neurospora crasa</i> (hongo del pan) mostrando                                                                                |
| Г.       | 120  | sus ramificaciones                                                                                                                              |
| -        |      | Micrografía de <i>Mucor</i> sp. mostrando los esporangios maduros 152                                                                           |
| _        |      | Esporotallo de <i>Allomyces arbuscula</i> con restos de esporas                                                                                 |
| Figura   | 122. | Micrografía de Aspergillus niger mostrando los esporangios                                                                                      |
| Ei arras | 122  | y sus ramificaciones                                                                                                                            |
| _        |      | Micrografía de <i>Penicillium notatum</i> mostrando sus conidióforos153                                                                         |
| rigura   | 124. | Fotografías que muestran a la especie llamada jacinto ( <i>Eichornia crassipes</i> ) en forma individual, con poco crecimiento en la superficie |
|          |      | de la laguna y crecimiento cubriendo buena parte del lago154                                                                                    |
| Figura   | 125  | Fotografías que muestran la lenteja de agua ( <i>Lemmna gibba</i> )155                                                                          |
| _        |      | Fotografías de los pantanos de Villa (Chorrillos, Lima, Perú)                                                                                   |
| 1 18414  | 120. | mostrando diferentes tipos de vegetación                                                                                                        |
| Figura   | 127. | Ciclo biológico de <i>Fasciola hepatica</i> , modificado de                                                                                     |
| 0        |      | CDC-dpdx (Adenda)418                                                                                                                            |
| Figura   | 128. | Ciclo biológico de <i>Taenia solium</i> donde se destaca la fase                                                                                |
| 0        |      | de cisticerco en humanos (Adenda)                                                                                                               |
| Figura   | 129. | Anatomía de un rotífero Monogononta                                                                                                             |
| _        |      | Fotografía de un nematodo de vida libre                                                                                                         |
| 0        |      | Moluscos gasterópodos del género <i>Physa</i>                                                                                                   |
|          |      | Copépodo de agua dulce                                                                                                                          |
|          |      | Modelo conceptual de las principales fuerzas que fluyen                                                                                         |
| Ü        |      | en un ecosistema de agua dulce                                                                                                                  |
| Figura   | 133a | Efectos de la carga orgánica sobre el oxígeno disuelto172                                                                                       |
| Figura   | 133b | .Efectos de la contaminación sobre los organismos acuáticos                                                                                     |
|          |      | Fases de la autodepuración                                                                                                                      |
| Figura   | 134  | Modelo termodinámico de un ecosistema                                                                                                           |

| Figura 135 | 6. Principales componentes y relaciones del ciclo hidrológico   | .183  |
|------------|-----------------------------------------------------------------|-------|
| Figura 136 | Balance hídrico en la superficie de la tierra                   | .185  |
| Figura 137 | . Ciclo del carbono                                             | .187  |
| Figura 138 | B. Esquema del ciclo del N                                      | .188  |
| Figura 139 | . Nódulos de la raíz de una planta de guisante (leguminosa),    |       |
|            | que contienen en simbiosis las bacterias fijadoras de N         |       |
|            | (Rhizobium sp.)                                                 | .190  |
| Figura 140 | . Transferencia de electrones en el proceso de fijación         |       |
|            | de nitrógeno atmosférico                                        |       |
|            | . Ingreso del proceso Anammox en el ciclo del N                 | .199  |
| Figura 142 | . Principales especies de planctomicetales relacionadas         |       |
|            | filogenéticamente y que intervienen en el proceso               |       |
|            | ANAMMOX (Adenda).                                               | .199  |
| Figura 143 | Esquema del ciclo del fósforo                                   | .201  |
| Figura 144 | . Esquema del ciclo del azufre                                  | .205  |
| Figura 145 | . Distribución filogenética de diferentes tipos de              |       |
|            | microorganismos que metabolizan el azufre                       | .207  |
| Figura 146 | . La integridad ecológica en equilibrio con los tres            |       |
|            | componentes esenciales                                          |       |
| Figura 147 | . Configuración de un biosensor mostrando biorreconocimiento,   |       |
|            | interfase y elementos de transducción                           |       |
|            | 8. Sistema AWACSS, incluyendo inmunofluorescencia total (TIRF)  |       |
| _          | Sistema carbonato en el agua                                    | .238  |
| Figura 150 | De Estabilización de la materia orgánica (DBO) con formación de |       |
|            | células nuevas y productos finales                              |       |
| _          | . DBO carbonácea y autotrófica                                  | .242  |
| Figura 152 | . Relaciones entre consumo de oxígeno, crecimiento              |       |
|            | microbiano y remoción de carbono orgánico                       |       |
|            | Curva de DBO en función del tiempo, relacionando Lt y L         | .247  |
| Figura 154 | Representación esquemática del tratamiento de agua residual     | 2 ~ 2 |
|            | en un reactor                                                   |       |
|            | Descripción del proceso en un reactor biológico                 |       |
|            | . Modelo de un reactor tipo batch                               |       |
| _          | . Reactor tipo pistón                                           | .254  |
| Figura 158 | 3. Modelo dinámico de reactor de flujo continuo y mezcla        | 2~~   |
| -          | completa                                                        |       |
| -          | Reactor de lecho fluidizado                                     |       |
| Figura 160 | . Contactor biológico rotatorio (RBC)                           | .259  |

| Figura 161. | Cámara de rejas de la planta de tratamiento de la ciudad                          | 265 |
|-------------|-----------------------------------------------------------------------------------|-----|
| T. 1.62     | de Pisco (Perú)                                                                   | 265 |
| Figura 162. | Biodegradabilidad de la molécula de glucosa por medio                             | 267 |
| T. 1.60     | de respiración aeróbica                                                           | 267 |
| Figura 163. | Biodegradabilidad de la molécula de glucosa por                                   | 260 |
| Γ' 164      | fermentación y respiración anaerobia                                              |     |
| _           | Biodegradabilidad de biopolímeros por metanogénesis                               | 270 |
| Figura 165. | Distribución de los organismos fotosintéticos con la                              | 201 |
| E: 166      | temperatura en lagunas de estabilización                                          | 281 |
| Figura 166. | Variación de la velocidad de la fotosíntesis en función de la                     | 202 |
| E: 167      | temperatura e intensidad de la radiación solar                                    | 282 |
| Figura 167. | Variación de la proporción de H <sub>2</sub> S, HS <sup>-</sup> y S= con el pH en |     |
|             | solución acuosa                                                                   | 287 |
| Figura 168. | Relación de sinergismo entre las algas y las bacterias                            |     |
|             | en la estabilización aerobia de la materia orgánica                               |     |
| _           | Perfil de oxígeno y potencial redox en lagunas facultativas                       |     |
| _           | Modelo ecológico de una laguna facultativa                                        |     |
| _           | Modelo de laguna facultativa de mezcla completa                                   |     |
|             | Modelo de laguna aireada                                                          | 304 |
| Figura 173. | Solución gráfica de la relación S <sub>0</sub> /S con respecto al tiempo          |     |
|             | de retención (ecuación 111)                                                       | 306 |
| Figura 174. | Esquema de un sistema de lagunas aireadas primarias y                             |     |
|             | secundarias                                                                       | 310 |
| Figura 175. | Remoción de material orgánico en función del tiempo en un                         |     |
|             | sistema estacionario de lodos activados                                           |     |
| Figura 176. | Modelo de reactor biológico de lodos activados                                    | 315 |
| Figura 177. | Modelo de formación de los flocs en lodos activados,                              |     |
|             | propuesto por Higgins (1997)                                                      | 316 |
| Figura 178. | Presencia de microorganismos en lodos activados,                                  |     |
|             | en sucesión ecológica                                                             | 321 |
| Figura 179. | Modelo de remoción de la materia orgánica en un reactor con                       |     |
|             | aireación de lodos activados                                                      | 323 |
| Figura 180. | Curva de crecimiento ideal para lodos activados en un reactor                     |     |
|             | tipo estacionario (batch)                                                         | 325 |
| Figura 181. | Modelo del proceso de lodos activados de mezcla                                   |     |
|             | completa con recirculación                                                        | 329 |
| Figura 182. | Diagrama de flujo para la revisión de un proceso de lodos                         |     |
|             | activados                                                                         | 336 |
| Figura 183. | Gráficas que representan la tasa de respiración por los                           |     |
|             | microorganismos y la tasa de consumo de oxígeno                                   | 338 |

Contenido

| Figura 184.  | Esquema de un respirómetro para mediciones de parámetros cinéticos                                                                      | 338 |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----|
| Figura 185.  | Observación del efecto tóxico en ensayos de respirometría                                                                               |     |
|              | usando muestras de lodos activados y muestra de referencia                                                                              | 342 |
| Figura 186.  | Esquemas de un filtro biológico típico                                                                                                  | 346 |
| Figura 187.  | Muestra de grava que puede ser usada como soporte en biofiltros                                                                         | 348 |
| Figura 188.  | Empaque estructurado a base de cerámica para ser usada en biofiltros                                                                    | 349 |
| Figura 189.  | Formación de biopelícula en el soporte del biofiltro                                                                                    |     |
|              | Modelo de los procesos biológicos en las piedras biofiltro RB-100                                                                       |     |
| Figura 191.  | Fotografía de un filtro biológico típico                                                                                                | 353 |
|              | Modelo de biofiltro sin recirculación. Se supone flujo de pistón y tasa de remoción de DBO                                              |     |
| Figura 193.  | Modelo cinético de biofiltros con recirculación Ofuente                                                                                 |     |
|              | Modelo de biofiltros                                                                                                                    |     |
| _            | Esquema de un sistema de tratamiento de aguas residuales                                                                                |     |
| O            | por medio de biodiscos                                                                                                                  | 364 |
| Figura 196.  | Modelo cinético en biodiscos                                                                                                            | 364 |
| Figura 197.  | Proceso biológico en anaerobiosis                                                                                                       | 373 |
| Figura 198.  | Vista microscópica de lodo granular de tratamientos anaeróbicos                                                                         | 375 |
| Figura 199a. | Esquema representativo de un tanque séptico                                                                                             | 379 |
| Figura 199b. | Esquema representativo de un tanque Imhoff                                                                                              | 379 |
| Figura 200a. | Modelo de reactores anaerobios: filtro anaeróbico de flujo ascendente y manto de lodos (UASB)                                           | 380 |
| Figura 200b. | Modelo de reactores anaerobios: filtro anaeróbico de flujo ascendente y manto de lodos (UASB)                                           | 380 |
| Figura 201.  | Esquema de un corte del fondo de sedimentador de un tanque Imhoff                                                                       |     |
| Figura 202.  | Corte de un tanque Imhoff que muestra algunas características de diseño del digestor                                                    |     |
| Figura 203.  | Esquema representativo de un reactor UASB convencional con sello hidráulico que mantiene el nivel de agua requerido en la cámara de gas |     |
| Figura 204.  | Representación esquemática de un reactor anaerobio de lecho fluidizado                                                                  |     |
| Figura 205.  | Vista panorámica de la PTAR Shafdan, de 45 ha, que incluye pretratamiento, reactores biológicos y clarificadores                        |     |
| Figura 206.  | Cultivos en el proyecto Copare-Tacna (Perú)                                                                                             |     |

#### ÍNDICE DE TABLAS

| de átomos de Cde átomos de acuerdo con el numero                                                                     | 5   |
|----------------------------------------------------------------------------------------------------------------------|-----|
| Tabla 2. Ácidos grasos que se encuentran en la naturaleza                                                            | 17  |
| Tabla 3. Tipos de respiración en microorganismos                                                                     | 44  |
| Tabla 4. Ejemplos de algunos virus de interés general                                                                | 51  |
| Tabla 5. Diferencias entre los procariotes Gram + y Gram                                                             |     |
| Tabla 6. Organismos que causan diferentes tipos de infecciones al hombre, de origen hídrico-alimentario              | 97  |
| Tabla 7. Inventario de agua en la superficie terrestre                                                               | 184 |
| Tabla 8. Principales géneros y especies bacterianas que forman nódulos con leguminosas                               | 189 |
| Tabla 9. Proteobacterias que forman nódulos con leguminosas                                                          | 191 |
| Tabla 10. Condiciones que favorecen la nitrificación en el tratamiento de aguas residuales                           | 194 |
| Tabla 11. Condiciones que favorecen la desnitrificación en el tratamiento de aguas residuales                        | 196 |
| Tabla 12. Efecto de diferentes iones presentes en los efluentes de                                                   |     |
| aguas residuales sobre la actividad de Anammox                                                                       | 200 |
| Tabla 13. Principales reacciones bioquímicas y los organismos                                                        |     |
| que participan en el ciclo del nitrógeno (adenda)                                                                    | 421 |
| Tabla 13a. Presiones sobre los ecosistemas de agua dulce                                                             | 211 |
| Tabla 14. Principales grupos de macroinvertebrados bentónicos que se usan como bioindicadores de la calidad del agua | 218 |
| Tabla 15. Biosensores bacterianos para monitorear contaminantes del petróleo                                         | 228 |
| Tabla 16. Efectos de los contaminantes presentes en aguas residuales                                                 | 243 |
| Tabla 17. Características típicas de un desagüe doméstico                                                            | 245 |
| Tabla 18. Algunos compuestos parcialmente oxidables por el dicromato en medio ácido                                  | 248 |
| Tabla 19. Aporte de DBO y DQO para diferentes tipos de desagües y mezcla completa                                    | 250 |

Contenido XXVII

| Tabla 20. Principales procesos operacionales en tratamiento de aguas residuales                                                                                                         | 264 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Tabla 21. Consumo de H, en reacciones anaeróbicas                                                                                                                                       |     |
| Tabla 22. Diseño de valores de cargas volumétricas de DBO en porcentaje de remoción de DBO en lagunas anaeróbicas a varias temperaturas                                                 |     |
| Tabla 23. Valores del coeficiente de reducciónbacteriana Kb (d-1)                                                                                                                       | 299 |
| Tabla 24. Distribución de bacterias heterotróficas aeróbicas en lodos activados                                                                                                         | 318 |
| Tabla 25. Causas y efectos de los problemas que se originan por la separación de los sólidos en las plantas de lodos activados                                                          | 333 |
| Tabla 26. Relación de microorganismos filamentosos identificados<br>en la Planta de Tratamiento de Aguas Residuales Industriales<br>(PTAR I) con las principales variables de operación | 334 |
| Tabla 27. Clasificación de los procesos en lodos activados según la carga                                                                                                               | 337 |
| Tabla 28. Características que deben cumplir los filtros según las cargas                                                                                                                | 349 |
| Tabla 29. Recomendaciones para mantener en estado operativo un sistema de biofiltros                                                                                                    | 362 |
| Tabla 30. Componentes del biogás en función del sustrato utilizado                                                                                                                      | 374 |
| Tabla 31. Factores de capacidad relativa de acuerdo con diferentes temperaturas para tanques Imhoff                                                                                     | 385 |
| Tabla 32. Tiempo requerido para la digestión de lodos en un tanque Imhoff de acuerdo con la temperatura                                                                                 | 386 |
| Tabla 33. Tiempos de retención hidráulicos recomendados según temperatura y caudales                                                                                                    | 388 |
| Tabla 34. Parámetros de diseño en plantas anaeróbicas tipo UASB                                                                                                                         | 390 |
| Tabla 35. Comparación de rendimientos obtenidos en Tacna con efluentes de la nas aireadas rendimiento con aguas blancas Rendimiento en t/ha                                             |     |
| Tabla 36. Rendimiento obtenido en México con aguas negras y aguas blancas Rendimiento en t/ha                                                                                           | 402 |
| Tabla 37. Categorías para el reúso de aguas residuales                                                                                                                                  | 403 |
| Tabla 38. Directrices recomendadas para el reúso de aguas en agricultura                                                                                                                | 404 |

# Prólogo



# Cuando cuidas y proteges el agua, proteges la vida

La vida es agua, bailando al son de las macromoléculas. Albert Szent-Györgyi

Lo que tenemos que cuidar y mejorar permanentemente es nuestro planeta Tierra (ecosfera), no solo a partir de las instituciones de gobierno o privadas, sino de todos los que habitamos en ella, con la única idea de revertir el deterioro ambiental originado principalmente por el desarrollo industrial, pero también debido a nuestros hábitos de contaminar el aire, el suelo y el agua.

Hemos llegado al extremo en los procesos de deforestación y combustión de carbono y los efectos ya están presentes en Sudamérica, debido también a la emisión de gases de efecto invernadero que contribuyen al cambio climático y al deshielo de los glaciares en los polos. De igual manera, la construcción de presas y reservorios aumentan el deterioro de los ecosistemas ocasionando la pérdida de la biodiversidad, etc.

Todos estos factores han deteriorado la calidad de las fuentes naturales de agua impidiendo su explotación para diversos usos; por tanto, todos estos factores se han convertido en un círculo vicioso que si no se detiene a tiempo llegará a un punto sin retorno.

Aún es posible revertir los impactos ambientales negativos pero para ello se requiere de mucho esfuerzo por parte de las autoridades gubernamentales para evitar problemas más graves como: sequías, inundaciones, enfermedades epidémicas que afectarían tanto al hombre como a los animales y plantas —y que de hecho ya existen en diversas partes del mundo—, entre otros.

La educación ambiental debe empezar en el hogar y en la edad preescolar. La educación inicial, primaria y secundaria deben ir acompañadas, durante todos los años, de cursos y talleres acerca del tema ambiental, y deben ser especialmente recreativos para desarrollar en los educandos una conciencia ecológica para la preservación del medio ambiente, el uso correcto del agua para consumo humano y la conservación de las fuentes naturales con una adecuada cultura del agua.

El libro *Biotecnología ambiental de aguas y aguas residuales* está dedicado principalmente a los estudiantes de ciencias e ingeniería en las carreras de biología, ingeniería ambiental, química, ingeniería sanitaria y algunas carreras tecnológicas; a los profesores universitarios e investigadores en el campo ambiental, así como a cualquier persona que desee ampliar sus conocimientos en los temas que se tratan.

Muchos lectores se preguntarán por qué este libro de biotecnología aborda la problemática del agua existiendo en la literatura una gran variedad de textos y tratados para cada tema. La respuesta es muy sencilla: se debe a que la mayoría de los textos profundizan adecuadamente en cada tópico o tema en forma aislada, dejando de lado la interrelación e interpretación de los aspectos biológicos que ocurren en los procesos de ingeniería, sin tener en cuenta, por ejemplo, los desarrollos metabólicos de los microorganismos que contribuyen con el proceso y las mejoras que se pueden realizar con el manejo adecuado tanto del mundo de la ingeniería como el biológico, dando lugar a la bioingeniería gracias al uso de herramientas adecuadas que ahorren esfuerzos y sean económicamente beneficiosas.

La biotecnología aplicada en estos procesos corresponde y depende de la habilidad y conocimientos de los profesionales para seleccionar aquellas alternativas que den los mejores resultados, incluyendo los avances biotecnológicos y teniendo en cuenta los costos y la preservación del medio ambiente.

En un libro como este es imposible abarcar todas las herramientas para las mejoras biotecnológicas, por lo que resultan necesarios los conocimientos de biología molecular, bioquímica, matemáticas e ingeniería genética. Sin embargo, se ha abordado en varios capítulos el tratamiento biológico de las aguas residuales, porque es un problema que afrontan todos los países de América Latina y el Caribe y al que se debe dar solución en el mediano plazo, a fin de minimizar las enfermedades endémicas y epidémicas, disminuyendo la tasa de morbimortalidad que afecta principalmente a los niños y a las personas de la tercera edad.

Investigando, aplicando y desarrollando programas de tratamiento biológico del agua estaremos cuidando nuestro más preciado recurso natural.

César Lazcano Carreño Esther Lazcano Carreño

# Presentación

**--**

América Latina está representada por los países de habla hispana de los que Perú forma parte como país proveniente de una cultura milenaria, en la que los pobladores de la época incaica manejaban los problemas de "ingeniería" y "biotecnología" de forma sorprendente, pues la agricultura era suficiente para una población de más de 15 millones de habitantes, con sembrados principalmente de maíz, papa, oca, etc. En conjunto con la ganadería conformada por los camélidos sudamericanos, era posible alimentar a esta vasta población, sin dejar de lado la pesca y la caza de animales salvajes para complementar la alimentación. Igualmente, la ingeniería hidráulica de la época estaba bastante adelantada; se habían construido acueductos y canales con transporte de agua a grandes distancias, que hoy se pueden apreciar en algunas ruinas asentadas en diversas partes de Perú, como Tambomachay, en la ciudad de Cusco.

Actualmente, Perú tiene una población de 28 millones de habitantes asentados principalmente en la zona costera. Lima, la capital, alberga la tercera parte de la población, pero tiene graves problemas en los ecosistemas acuáticos, los cuales se vienen deteriorando día a día por los vertimientos de aguas residuales sin tratar o con tratamientos deficientes, originando sobrecostos en la producción de agua potable por el uso de estos sistemas como fuentes de abastecimiento, contaminación de cultivos cuando el riego se realiza con desagües crudos o con tratamientos deficientes, etc. Cuando los efluentes se vierten en el océano Pacífico, la contaminación de las aguas costeras es inminente e impide la pesca artesanal y algunos

deportes acuáticos como la natación y la recreación poblacional. En un enfoque claro, los efluentes con tratamiento parcial o sin tratamiento en descarga directa generan contaminación de cultivos por el uso de las aguas para riego de terrenos de cultivo y contaminación marina.

La problemática de Perú con respecto a las deficiencias en el tratamiento de las aguas servidas es común en todos los países de la región, con ligeras diferencias, por lo que existe la necesidad de establecer criterios —que es lo que básicamente se desarrolla en el libro— que permitan una mejora en la disposición de aguas residuales, cuidado del medio ambiente para preservar los ecosistemas acuáticos, y educación permanente en todos los niveles educativos, así como el cumplimiento de la legislación vigente; esto mejorará la calidad de vida de las poblaciones, principalmente de las más pobres y con menos recursos.

Este libro incluye un estudio detallado de los diferentes aspectos biotecnológicos que se conjugan con el ambiente y tienen su aplicación en el tratamiento biológico de las aguas residuales en general; para ello se detallan inicialmente los conceptos básicos de biología, teniendo en cuenta los avances recientes y las ubicaciones taxonómicas de los seres vivos de acuerdo con las nuevas propuestas, utilizando el término Dominio para los tres grandes grupos de seres vivos: Archaea, Bacteria y Eukaria, con el fin de diferenciar mejor las actividades funcionales que cumple cada grupo en los ecosistemas acuáticos y su labor principal en los sistemas de tratamiento biológico.

Utilizando el Manual de bacteriología de Bergey se ha podido identificar a los diferentes organismos (bacterias y arqueas) de acuerdo con las funciones que cumplen en el metabolismo, crecimiento y reproducción en los sistemas de tratamiento biológico de aguas residuales y el papel en cada proceso, lo cual es de gran utilidad para un buen diseño, operación y mantenimiento de los sistemas de tratamiento.

Se incluye el capítulo "Ecosistemas acuáticos", en el cual se analizan las características más importantes de un ecosistema en relación con las leyes de la termodinámica, y se adopta el término "exergía" en los ecosistemas como un nuevo concepto que permite conocer la utilización mínima de energía para producir el máximo trabajo, considerando que un ecosistema acuático es un sistema abierto. Asimismo, se da énfasis a los principales ciclos biogeoquímicos en un ecosistema acuático, para lo cual se han elaborado, en forma didáctica, las principales reacciones en cada uno de los ciclos que son de utilidad para una mejor comprensión de los sistemas de tratamiento biológico de aguas residuales; también se ha introducido en el ciclo del nitrógeno un nuevo componente que corresponde al complejo Anammox, que representa un cortocircuito en el proceso de desnitrificación, con ahorro de tiempo y energía y de gran aplicabilidad en los sistemas que mencionamos.

Un aspecto importante de este libro corresponde al capítulo "Evaluación de la calidad de las aguas", en el cual se incluyen temas innovadores como el biomonitoreo, bioevaluación y biocriterio, además de diferentes métodos con bioindicadores.

Finalmente, el tema central del libro corresponde al tratamiento biológico de aguas residuales, en el cual se exponen los aspectos importantes de los reactores biológicos y su aplicabilidad en los sistemas de tratamiento. Los procesos biológicos ampliamente tratados corresponden a los sistemas de lagunaje, extensamente difundidos en los países de América Latina y el Caribe, los sistemas de tratamiento por lodos activados, métodos de reciente implementación en Perú por sus costos elevados, los filtros biológicos y los biodiscos. El capítulo final corresponde al reúso de aguas residuales como ejemplos de aplicabilidad de los efluentes tratados y las experiencias en los diferentes países de América y Europa.

Dedico este libro principalmente a los estudiantes de ciencias e ingeniería para que aborden los temas que les sean útiles en sus cursos de biotecnología, tratamiento de aguas residuales, química ambiental, etc., y a los tecnólogos que trabajen o estudien temas de biotecnología ambiental. Asimismo, este libro resulta práctico y útil para los profesores de los cursos mencionados; como libro de consulta para los investigadores y para toda persona que desee tener un conocimiento sobre los temas que se incluyen o deseen ampliar sus conocimientos al respecto.

# BIOTECNOLOGÍA AMBIENTAL DE AGUAS Y AGUAS RESIDUALES



Los ecosistemas acuáticos de la costa pacífica de América del Sur se han venido deteriorando en los últimos años por los vertimientos descontrolados de aguas residuales no tratadas o con tratamientos deficientes. Dichos efluentes han contaminado terrenos de cultivo, generado sobrecostos en la producción de agua potable e impedido el desarrollo de la pesca artesanal y turismo costero. Esta es una realidad preocupante

#### Incluye

- Características físicas, químicas y biológicas de las aguas residuales, y reactores biológicos en su tratamiento.
- Biomonitoreo, bioevaluación, biocriterios y bioindicadores en evaluación de calidad de aguas.
- Métodos de tratamiento de aguas residuales (lagunas de estabilización, lodos activados, reactores de película biológica fija, tratamiento anaeróbico).

para todos los países de la región y requiere de la fijación de criterios sólidos sobre disposición de aguas.

Al transitar de la biología a la ingeniería, este libro llena un vacío en la bibliografía sobre tratamiento de aguas en América Latina. En este sentido, luego de introducir al lector a los ecosistemas acuáticos, sus principales ciclos biogeoquímicos y los seres vivos que allí habitan (*Archaea, Bacteria y Eukaria*), la calidad biológica de las aguas y las aguas residuales, el autor describe los procesos de tratamiento de aguas contaminadas y su reúso en agricultura y piscicultura a partir de experiencias exitosas en América y Europa.

Biotecnología ambiental de aguas y aguas residuales es un texto guía para estudiantes de carreras de nivel tecnológico, pregrado y posgrado en Biología, Ingeniería Ambiental, Química e Ingeniería Sanitaria, y como texto de consulta para investigadores y profesionales de estas áreas en todos los países de la región.

Colección: Ingeniería y salud en el trabajo

Área: Ingeniería ambiental





www.ecoeediciones.com

e-ISBN 978-958-771-345-9